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Fluid flow generated by switching a 
magnetic field on or off 
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A uniform magnetic field is switched on at  time t = 0 outside a body of conducting 
fluid. It is assumed that the field strength increases in time in proportion to 
1 -e-ut, where a is a constant of the circuit generating the field. Under the 
assumption of small magnetic Reynolds number and small magnetic Prandtl 
number the equations governing the diffusion of the field into the fluid are 
derived and a simple expression is given for the initial vorticity distribution pro- 
duced in the fluid. The situation in which an initially uniform field is switched off 
is also considered. It is shown that, for sufficiently symmetrically shaped bodies 
of fluid, the vorticity generated by the switching-on of the field is the same as 
that generated by the switching-off. The particular case of an infinitely long 
circular cylinder of conducting fluid is considered in detail and an explicit 
expression is derived for the vorticity distribution. 

1. Introduction 
This paper generalizes some of the results obtained by Sneyd (1971), who con- 

sidered the problem of a uniform magnetic field switched on instantaneously 
across a long circular cylinder of conducting fluid. As the field diffused into the 
fluid it produced an electric current flow and hence a rotational Lorentz force 
distribution which set up four eddies - one in each quadrant of the cross-section 
of the cylinder. It was shown that switching off an initially uniform field produced 
an identical flow. 

It was supposed in that paper that the magnetic field was switched on 
instantaneously. Of course a magnetic field cannot be switched on instantaneously 
because of the self-inductance of the coils producing the field. If a potential 
difference V is applied to some electrical circuit the current I in the circuit 
satisfies the differential equation 

RI + L dI /& = V ,  

where R is the resistance and L the self-inductance of the circuit. If I is initially 
zero and a constant potential difference V is applied at time t = 0, then 

I = ( V / R ) ( l - e - " t ) ,  

The intensity of the magnetic field due to the circuit is proportional to I and its 
direction is determined by the geometry of the circuit, which is constant in time. 

where a = R/L. (1.1) 
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It follows that, if B is the magnetic field due to a circuit which is switched on a t  
time t = 0, then B = B,( 1 -cat), 

where B, is the final steady magnetic field. 

is switched off a t  time t = 0, then 

(1.2) 

If  an initially steady current is flowing in the circuit and the potential difference 

I = (V/R)e-at. 

Thus if the circuit is switched off at time t = 0 the magnetic field B is given by 

B = Boe-at. (1.3) 
In  this paper, instead of supposing that magnetic fields are switched on and off 
instantaneously, we shall suppose that they build up or die away according to 
(1.2) and (1.3). 

Section 2 of this paper is concerned with the general situation in which a 
spatially uniform magnetic field B, is switched on outside a body of conducting 
fluid of arbitrary shape. A simple expression is derived for the initial vorticity 
distribution generated in the fluid, before it is modified by convection or viscous 
diffusion. It is shown that, if the body of fluid is an infinitely long cylinder of 
arbitrary cross-section and B, is normal to its generators, or if the body of fluid 
is symmetric about an axis parallel to B,, then the vorticity distribution gene- 
rated in the fluid when the field is switched on is identical to the vorticity distribu- 
tion generated when an initially uniform field is switched off, This is a generaliza- 
tion of the result proved by Sneyd (1971) for an infinitely long circular cylinder. 
It is also proved that for less symmetrically shaped bodies of fluid the vorticity 
produced by the switching-off is not in general the same as that produced by the 
switching -on. 

Sect.ion 3 considers the particular problem of a field switched on across a long 
circular cylinder of fluid. This is the same problem as was considered by Sneyd 
(1971), but the analysis here makes allowance for a finite switching-on time. An 
expression is derived for the initial vorticity and it is shown that, in the limit 
when the switching-on time becomes small in comparison with the time scale for 
magnetic diffusion, this expression becomes identical with the one derived in the 
earlier paper. 

2. General theory 
2.1. Diffusion of the magnetic Jield 

A volume V bounded by a surface S is filled with a uniform incompressible fluid 
of density p, kinematic viscosity v and electrical conductivity G. 1 is a typical 
length scale for V.  At time t = 0 a spatially uniform magnetic field B, is switched 
on outside this body of fluid, so that far away from the influence of the fluid the 
magnetic field B will be given by ( 1.2). Let B,(x, t )  be the magnetic field outside 
the fluid, and B,(x, t )  the magnetic field inside. The region outside the fluid will 
be assumed non-conducting (e.g. a vacuum) so the electric current flow there will 
be zero and V x B, = 0. B, satisfies the induction equation: 

i?B,/at = V x (U x B,) +hV2B2, 
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where u is the fluid velocity, h = l/(,u,c~) and pa = 47r x 10-7 is the magnetic 
permeability of free space. It will be assumed that the magnetic Reynolds 
number for the flow inside V is small, i.e. that the flow does not signiscantly 
affect the magnetic field. This equation can then be approximated by the simple 
diffusion equation 

aB,/at = AV'B,. 

The magnetic field is continuous across S so B, and B, must be equal on 8. 
The equations determining B, and B, can be summarized as follows: 

VxBl=O,  (2.1) 
aB,/at = AV'B,, (2.2) 

(Bl)* = P 2 ) &  (2.3) 

B, N B,( 1 - e-art) far from V ,  (2.4) 
(B,)t=, = 0. (2.5) 

ro = P/h is the time scale for the diffusion of the magnetic field into V and a-1 
the time scale for the switching-on of the field. Suppose that the field has been 
left switched on for a time much longer than 7, and a-l. The magnetic field will 
now be everywhere uniform and equal to B,. If the applied field is then switched 
off a t  time t = 0, the field far away from the influence of the fluid will deorease 
according to the equation 

B = B,e-at. 

Let BT and BZ be the magnetic field outside and inside the fluid during the 
switching-off. The equations determining BT and Bi  are 

(2.1f) 

(2.2') 

(2.3') 

(2.4l) 

(B;)t=o = B,. (2.5') 

When one compares these equations with the equations for B, and B, it can 
be seen that the solutions for B: and BZ are 

and 

2.2. Vorticity generated by the switching-on and switching-off of the field 

The speed at which the applied magnetic field penetrates the fluid is limited by 
two factors: the k i t e  magnetic diffusion time ro and the finite switching-on 
time a-1. The time scale for penetration of the fluid by the field will thus be the 
maximum of r, and a-1. The ratio of these two time scales is a dimensionless 
number which we denote by T: 

T = rOa = 12ap,~. 
14-2 
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We shall suppose that T is not very small. If T is very small then the gradual 
changes in the external field are quickly adjusted by magnetic diffusion so that 
the field inside the fluid is always approximately equal to the field outside; i.e. it  
is always approximately uniform. In  this case the electric current will be zero and 
the fluid will not move. 

The vorticity generated in the fluid by the rotational Lorentz forces is con- 
tinuously modified by convection and viscous diffusion. The time scales for these 
processes are respectively rO/Rm and ro/P, where R, is the magnetic Reynolds 
number and P the magnetic Prandtl number. Since R, and P are assumed small 
these time scales will be large compared with ro and hence with or1 (since we 
assume that a-1 is not much larger than ro). In  calculating the fluid vorticity 
during the short period in which the magnetic field penetrates the fluid, it is 
legitimate to neglect the longer-term effects of convection and viscous diffusion. 
The vorticity equation then becomes simply 

ao/at  = ( i / p )  V x (j x B2). (2.8) 

Suppose that before the magnetic field is switched on the fluid is at  rest and 
o = 0. The solution of (2.8) is then 

t 
a=:! Vx(jxB,)dt.  

P o  
The total vorticity, 8 say, generated by the switching-on of the field is given by 

= (W)t=71 V x (j x B,) dt, 

where r1 is a time scale large compared with ro but small compared with rO/Rn 
or ro/P. Assuming that this integral converges as rl+oo we may write 
approximately 

M = (co)t,m = A S m  v x (j x ~ , ) d t .  

P* = :Irn V x  ( j*x Bf)dt, 

(2.9) 
P o  

Similarly, the total vorticity a* generated by the switching-off of an initially 
uniform field is given by 

(2.10) 
P o  

where j* = ( l/,uo) V x B: is the electric current density in the fluid during the 
switching-off. It follows from taking the curl of (2.7) that 

j* = -j. 
Substitution in (2.10) gives 

a* = :Im V x (j x B2) (2.11) 
P o  

From (2.11) and (2.9) it follows that 

Q* = a-- (Bo.V) j d t  
P O  

where 

(2.12) 
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Let us focus attention on the vector f ,  

(2.13) 

since in the magnetohydrodynamic approximation j = ( l /po) V x B. Now, 

= E l *  (V x E) dt = -- 
P o  P 0 at 

from Ohm’s law and Faraday’s law. Thus 

or 

Finally, since the region outside 8 is electrically insulating the normal component 
of j must be zero on 8. It follows that 

(f . n)s = 0, (2.15) 

where n is the unit outward normal vector on S. 
Equations (2.13)-(2.15) specify the divergence and curl off throughout Y and 

the normal component off on the boundary 8. According to Helmholtz’s theorem 
these three equations then determine f uniquely. It is possible to write down 
explicit solutions for f in the following special cases. 

Cuse (a) .  Suppose that V is an infinitely long cylinder of uniform cross-section 
and that B, is normal to its generators. Choose a Cartesian co-ordinate system 
with the z axis parallel to the generators of the cylinder and the x axis parallel to 
B,. Then the vector -B,(cr/p) yk will satisfy (2.13)-(2.15), so, by Helmholtz’s 
uniqueness theorem, 

Notice in this case that (B,.V)f = 0 so according to (2.12) 8 = a*. I n  this case 
the vorticity generated by switching off the field is equal to that generated by 
switching it on. 

Case (b ) .  Suppose that Y is symmetric about an axis parallel to B, (e.g. a 
sphere). Choose a cylindrical polar co-ordinate system (r ,  8, z )  so that the axis of 
symmetry coincides with the x axis. Then the vector -&B,(a/p)re, satisfies 

f = - B o ( ~ / / ~ ) y k .  

(2.13)-(2.15) SO 
f = -+Bo(a/p)re8. (2.16) 

Again it follows that (Bo. V) f = 0 and that P = 51”. 
This result that SL = SL* in case (a)  and case ( b )  does not depend on the expo- 

nential build-up and decay of the applied magnetic field. So long as B ccf ( t )  and 
B* cc 1 - f ( t ) ,  where f(t) is any continuous function such that f(0) = 0 and 
f(m) = I ,  it will still be true that 8 = 8”. 

It is not in general true that S2 = P* for less symmetrically shaped bodies of 
fluid. For suppose it is true that 8 = a*, i.e. that 

(B,.V)f = 0. (2.17) 
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If the x axis is chosen parallel to B, one finds that 

a f p z  = 0. 

af,lax = afilay = o 
This equation, together with (2.14), implies that 

and hence that f, is constant. Provided that the surface of the body of fluid is 
smooth there must be at least one point on the surface where the tangent plane 
is normal to the z axis, i.e. where n = k. At this point (2.15) shows that f, = 0 and 
since f, is a constant we must have f, = 0 everywhere. Thus the vector f must be 
of the form 

f = f&, Y) i +f,h y)j .  

Let A,  be the surface formed by the intersection of the plane z = c (a constant) 
with the body of fluid (see figure 1). The problem of determining f now reduces 
to a two-dimensional problem in the region A,. Equations (2.13)-(2.15) show 
that in A ,  we must have 

(2.18) 
(f . n’), = 0, J 

where n‘ is a unit vector in the x, y plane and normal to the boundary of A,. The 
two-dimensional form of Helmholtz’s theorem shows that the equations (2.18) 
determine f, and fY and hence f uniquely. 

Thus if it is true that SL = SL* then f is uniquely determined by the shape of 
any one purticular cross-section A,  of the body of fluid. But if f is fixed by the 
shape of one cross-section A, there is no guarantee that the condition (f . n), = 0 
will not be violated on another cross-section A,. For example, suppose that 
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A, is a circle. Then f is given by (2.16). Now the condition (f .n)s = 0 will be 
violated at some point on S unless all the other cross-sections are concentric 
circles. 

3. Field switched on across a circular cylinder 
3.1. Diffusion of thejield 

This section is concerned with the particular case of an infinitely long circular 
cylinder of conducting fluid and a uniform applied magnetic field B, normal to 
its axis. This problem was considered by Sneyd (1971), but in that paper it was 
assumed that the external magnetic field was switched on instantaneously, i.e. 
that T = co. Here the same problem will be solved for finite values of T. 

A cylindrical polar co-ordinate system (r, 8, z)  is used so that the equation of 
the fluid cylinder is r < a. The x axis is chosen parallel to the applied magnetic 
field. The magnetic fields B, and B, are represented by their corresponding 
stream functions $l and $2: 

Equations (2.1)-(2,5) when written in terms of $l and $, become 

V2$, = 0, 

a+-,/at = w$,, 

$, - BOr sin O( 1 - e-at) as r -+ 00, (3.4) 

($2)t=0 = 0. (3.5) 

These equations may be solved by writing 

$, = fl(r, t )  sin 8, = f2(r ,  t )  sin 8 

and taking the Laplace transform of (3.2) in t. When the Laplace transform of 
f,(r,t) is inverted by contour integration one obtains the following solution 
for $2: 

2B0a sin 8Jl(Tt) e-at 

TJOW 
$-, = B, a sin 6( - 

where 5 = ./a, the A, are the positive zeros of J,(x) and T = a2a/h. It can be seen 
that as T-tco equation (3.6) tends to the corresponding equation, equation (2.5), 
in Sneyd (1971). If T is small 

and $-,(r,8, t )  N B0rsin8(1-e-"t), 

which is just the stream function for the applied magnetic field at  time t .  

Jl(TE)ITJO(T) f 
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It might appear from (3.6) that $z has a singularity as T +A,, but this is not 
so since the singularity of the term in the infinite series is cancelled by a corre- 
sponding singularity in the second term of (3.6). 

3.2. Fluid motion generated by the rotational Lorentz force 

The current density j induced in the cylinder of fluid can now be calculated: 

j = ( l /po)  V x B2 = - ( l /p0 )  W 2 k .  

The total vorticity !2 generated by the switching-on of the field is given by (2.9): 

Using the formula for @2 given by (3.6) one finds (after a little algebra and sum- 
mation of series by contour integration) that 

Eigure 2 shows graphs of the function f(5) for various values of T.  It can be seen 
that at  any given point in the fluid the vorticity generated decreases as T 
decreases. 
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The initial flow produced by the switching-on of the field is two-dimensional 
and incompressible so there exists a stream function x such that 

Now, 

Let x = -g(t)sin28. 

Then the above equation becomes 

v2x = -w ,  = - (q sin 2%P,W(5) .  

g”+--- ; ;: = (B,2a2/PPo4f(5). 

The boundary conditions on g are that it must remain finite a t  = 0 and that 
g( 1) = 0, i.e. that the surface of the cylinder must be a streamline. The Green’s 
function G(& t )  for the problem 

is given by 
g“ -I- g’/& 4g/y = 0, g(0) < Go, g( 1) = 0 

t 3 - 1 / t p ,  o G 6 < t ,  

a ( p -  i / p ) t 3 ,  t c 8 G 1. 

x = -  B; sin 20 ( (62 - ;) 1; t ” f t )  at + 6qE1 ( t 3  - l / t ) f ( t )  dt) . 
4PPo 

4. Conclusions 
The graphs in figure 2 show that the finite switching-on time of the applied 

magnetic field does not significantly affect the overall pattern of the flow pro- 
duced. The most important effect of the finite switching-on time is on the flow 
speeds: for large T the flow is rapid, and for small T i t  is slow, 

It is difficult to estimate a likely experimental value for T for any particular 
body of conducting fluid. The value of T depends on the large number of factors 
involved in the design of the magnet generating the applied field: the number of 
turns of wire, the diameter and material of the wire, etc. It should be possible to 
design magnets to make T large or small, so it should be possible to verify 
experimentally the conclusions of $ 3 .  

REFERENCE 

SNEYD, A. D. 1971 Generation of fluid motion in a circular cylinder by an unsteady 
applied magnetic field. J .  Fluid Meoh. 49, 817. 




